Code: CS2T5, IT2T5

I B.Tech - II Semester-Regular / Supplementary Examinations - May 2017

BASIC ELECTRONICS ENGINEERING

 (Common for CSE \& IT)Duration: 3 hours
Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$

1.

a) What is the effect of junction temperature on cut-in voltage of a PN diode?
b) What is break down? What are its types?
c) Define rectifier efficiency.
d) What is the function of rectifier?
e) A transistor connected in common base configuration has a - \qquad input resistance and a \qquad output resistance.
f) What are the regions used when BJT is used as a switch ?
g) Why IC 741 is not used for high frequency applications ?
h) Define input offset current. State the reasons for the offset currents at the input of the op-amp.
i) Draw the circuit of basic integrator using op-amp.
j) Mention some of the linear applications of op-amps.
k) Write down the equation for average DC voltage across the load in a half-wave rectifier and full wave rectifier circuit.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) The current flowing in a certain silicon PN junction at room temperature is $2 \times 10^{-7} \mathrm{~A}$, when a large reverse bias voltage is applied. Calculate the current when a forward voltage of 0.1 V is applied across the junction.
b) Sketch V-I characteristics of a zener diode. How are they determined in the laboratory?
3. a) Describe the working principle of full wave rectifier with centre tapped transformer and derive the expressions for the ripple factor, efficiency, $\mathrm{V}_{\mathrm{dc}}, \mathrm{I}_{\mathrm{rms}}, \mathrm{I}_{\mathrm{dc}}$ and $\mathrm{V}_{\mathrm{rms}}$.

12 M
b) Assume that the total voltage across the high-voltage secondary of a transformer used to supply a full-wave rectifier is 300 volts. Find the average load voltage (ignore the drop across the diode).
4. a) With necessary circuit and waveform, explain the switching characteristics of a transistor in detail.
b) Derive the expression for Input resistance, output resistance and voltage gain for
i) Common emitter amplifier
ii) Common collector amplifier
5. a) Draw 8 pin diagram of IC 741 . State function of each pin. 4 M
b) List electrical characteristics of an ideal op-Amp. 4 M
c) Explain the following parameters of an op-amp and state their typical values for IC $741 \mathrm{op}-\mathrm{amp}$.
i) Input bias current
ii) PSRR
iii) CMRR
iv) Slew rate
v) Input Impedance
vii) Bandwidth
vi) Output Impedance
viii) Open loop Voltage Gain
6. a) Explain how Op-Amp can be used as
i) Integrator
ii) Differentiator
iii) Comparator

10 M
b) Explain the operation of inverting \& non inverting amplifier.

6 M

